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Casimir-Polder forces

vdW - CP interaction Casimir and Polder (1948)

The interaction energy between a ground-state atom 
and a surface is given by

UCP(RA) =
h̄

c2ε0

∫
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dξ
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Atomic polarizability:

Scattering Green tensor:
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G(r, r′, ω) = δ(r − r
′)
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Modern experiments

 Deflection of atoms Hinds et al (1993)

L= 0.7-1.2 um
Exp-Th agreement @ 10% UCP = −

1

4πε0

π3h̄cα(0)

L4

[

3 − 2 cos2(πz/L)

8 cos4(πz/L)

]



Modern experiments

 Deflection of atoms Hinds et al (1993)

L= 0.7-1.2 um
Exp-Th agreement @ 10%

 Classical reflection on atomic mirror Aspect et al (1996)

Udip =
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Modern experiments (cont’d)

 Quantum reflection

Shimizu (2001)
DeKievet et al (2003)

Ketterle et al (2006)

Wave-nature of atoms implies 
that slow atoms can reflect from 
purely attractive potentials

U = −Cn/rn (n > 2)

φ =
1

k2

dk

dr
> 1k =

√

k2
0
− 2mU/h̄2



Modern experiments (cont’d)

 Quantum reflection

Shimizu (2001)
DeKievet et al (2003)

Ketterle et al (2006)

Wave-nature of atoms implies 
that slow atoms can reflect from 
purely attractive potentials

U = −Cn/rn (n > 2)

 BEC oscillator Cornell et al (2007)

φ =
1

k2

dk

dr
> 1k =

√

k2
0
− 2mU/h̄2



CP within scattering theory

h(x,y)
←

Ep′ (k′
, ω)

→

Ep (k, ω)

→

Ep (k, ω) =

∫
d2k′

(2π)2

∑
p′

〈k, p|R(ω)|k′, p′〉
←

Ep′ (k′, ω)

Input and output fields related via reflection operators

→

E (R, ω) =

∫
d2k

(2π)2
e−ik·r

→

E (k, z, ω)

→

E (k, z, ω) = [
→

ETE (k, ω) ε̂+TE(k)+
→

ETM (k, ω) ε̂+TM(k)] eikzz

ε̂
+
TE(k) = z × k ε̂

+
TM(k) = ε̂

+
TE(k) × K (K = k + kzz)

z

x

y

Output fields:

Input fields: idem with kz → −kz
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Specular/non specular scattering

〈k, p|R(0)|k′, p′〉 = (2π)2δ(2)(k − k
′) δp,p′ rp(k, ξ)

h(x,y)

In order to treat a general rough or 
corrugated surface, we make a 
perturbative expansion in powers of h(x,y) 

R = R
(0)

+ R
(1)

+ . . .

 Specular reflection:

rTE =
κ − κt

κ + κt

rTM =
ε(iξ)κ − κt

ε(iξ)κ + κt

(κt =
√

ε(iξ)ξ2/c2 + k2)Fresnel coefficients
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κ − κt

κ + κt

rTM =
ε(iξ)κ − κt

ε(iξ)κ + κt

(κt =
√

ε(iξ)ξ2/c2 + k2)Fresnel coefficients

 Non-specular reflection:

〈k, p|R(1)|k′, p′〉 = Rp,p′(k,k′) H(k − k
′) Fourier transform of h(x,y)

Greffet (1988), Reynaud et al (2005)

They can be obtained from the Extinction Theorem of electromagnetism using the 
Rayleigh approximation. This says that all incoming fields are reflected back to infinity,  
which requires small slopes of the profile h(x,y)

The non-specular reflection matrices depend on the geometry and material properties.



Lateral Casimir-Polder force

UCP = U
(0)
CP(zA) + U

(1)
CP(zA, xA)

 Normal CP force: U
(0)
CP(zA) =

h̄

c2ε0

∫
∞

0

dξ

2π
ξ2α(iξ)

∫
d2k

(2π)2
1

2κ

∑
p

ε̂+p · ε̂−p rp(k, ξ) e−2κzA

 Lateral CP force: U
(1)
CP(zA, xA) =

∫
d2k

(2π)2
eik·rA g(k, zA) H(k)

Response function g: g(k, zA) =
h̄

c2ε0

∫
∞

0

dξ

2π
ξ2α(iξ)

∫
d2k′

(2π)2
ak′,k′−k(zA, ξ)

ak′,k′′ =
∑

p′,p′′

ε̂+
p′ · ε̂

−

p′′

e−(κ′+κ”)zA

2κ′′
Rp′,p′′(k′,k′′)

Our approach is perturbative in h(x,y), which should be the smallest length 
scale in the problem   

FL

FN

h ! zA, λc, λA, λ0



Sinusoidal corrugation
h(x, y) = h0 cos(kc x)Uni-axial corrugation: 

FL = kch0 sin(kc xA) g(kc, zA) x

Lateral Casimir-Polder force:

λc = 2π/kc

λc

We will show below that                    , so that the lateral force brings the 
atom to the neighborhood of one of the crests

g(kc, zA) < 0

Corrugation period: 

U
(1)
CP = h0 cos(kc xA) g(kc, zA)



Proximity force approximation

UCP(RA) ≈ U
(0)
CP(zA − h(rA)) ≈ U

(0)
CP(zA) − h(rA) U

(0)′

CP (zA)

  The PFA corresponds to approximating the CP energy by its expression for the 
planar case with a “local” distance zA − h(rA)

  The pairwise summation approach is also approximate, since Casimir forces are 
not additive, expect in the special case of very dilute media.

  The PFA corresponds to the limiting case 
where the corrugation is very smooth with 
respect to the other length scales:

kc zA ! 1  [PFA]



Proximity force approximation

UCP(RA) ≈ U
(0)
CP(zA − h(rA)) ≈ U

(0)
CP(zA) − h(rA) U

(0)′

CP (zA)

  The PFA corresponds to approximating the CP energy by its expression for the 
planar case with a “local” distance zA − h(rA)

  The pairwise summation approach is also approximate, since Casimir forces are 
not additive, expect in the special case of very dilute media.

  The PFA corresponds to the limiting case 
where the corrugation is very smooth with 
respect to the other length scales:

kc zA ! 1  [PFA]

  Given that the lateral CP potential is                                     
U

(1)
CP = h(rA) g(kc, zA) g(kc → 0, zA) = −

dU
(0)
CP(zA)

dzA

, we obtain                                    

  “proximity force theorem”
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  The PFA corresponds to approximating the CP energy by its expression for the 
planar case with a “local” distance zA − h(rA)

  The pairwise summation approach is also approximate, since Casimir forces are 
not additive, expect in the special case of very dilute media.

  The PFA corresponds to the limiting case 
where the corrugation is very smooth with 
respect to the other length scales:

kc zA ! 1  [PFA]

  Given that the lateral CP potential is                                     
U

(1)
CP = h(rA) g(kc, zA) g(kc → 0, zA) = −

dU
(0)
CP(zA)

dzA

, we obtain                                    

  “proximity force theorem”

  Deviations from PFA can be measured by the ratio ρ ≡

g(kc, zA)

g(0, zA)



Perfect reflectors

n(x, y) × E(x, y, h(x, y)) = 0

E = E
(0)

+ E
(1)

+ . . .

n(x, y)

h(x,y)

R
(1)(k,k′; ξ) = −2

(

κ′C ξS/c
ξκ′

cκ
S −

kk′

κ
−

ξ2

c2κ
C

)

C = cos φ

S = sinφkk
′

kc

φ

 vdW response function  

 CP response function

g(kc, zA) = −

h̄G(kczA)

64π2ε0z
4
A

∫
∞

0

dξα(iξ)

G(Z) = Z
2[2K2(Z) + ZK3(Z)]

g(kc, zA) = −

3h̄cα(0)

8π2z5
A

F (kczA)

F (Z) = e−Z(1 + Z + 16Z2/45 + Z
3/45)

(zA ! λA)

(zA ! λA)
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  Dynamic polarizability of Rb
Babb et al (1999)
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  Lateral potential energy          
Rb + sine corrug. + perf. reflector
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Perfect reflectors (cont’d)

  Dynamic polarizability of Rb
Babb et al (1999)

  Deviations from PFA

  Lateral potential energy          
Rb + sine corrug. + perf. reflector

U
(1)

λc = 10µm

atom-surface distance                                    
   

Example:                                     

zA = 2µm ! λA

corrugation wavelength                                   λc = 3.5µm

ρ ≈ 30%

PFA largely overestimates the 
magnitude of the lateral effect !                                   



Real materials
  Calculation of                    in terms of         of bulk materialsR

(1)
p,p′(k,k′, ξ)

R
(1)
TE,TE(k,k′; ξ) = 2κ C hTE,TE(k,k′, ξ)

R
(1)
TE,TM(k,k′; ξ) = 2κS

cκ′

t
√

εξ
hTE,TM(k,k′, ξ)

R
(1)
TM,TE(k,k′; ξ) =

2
√

εκκt
ξ
c
S

( ξ
c
)2 − (ε + 1)κ2

hTM,TE(k,k′, ξ)

R
(1)
TM,TM(k,k′; ξ) = −2κ

εkk′ + κtκ
′

tC

( ξ
c
)2 − (ε + 1)κ2

hTM,TM(k,k′, ξ)

hpp′(k,k′) =
rp(k)tp

′

(k′)

tp(k)

  Optical data + Kramers-Kronig relations

rp(k, ξ) tp(k, ξ)

reflection and transmission Fresnel 
coefficients for a plane inter-phase                                    

&

ε(iξ) Reynaud et al (2005)
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  Deviations from PFA
Just as for perfect reflectors, PFA largely overestimates the lateral CP force. 
(more later)                                    



Atoms as local probes

In contrast to the case of the lateral Casimir force between corrugated surfaces, an 
atom is a local probe of the lateral Casimir-Polder force. Deviations from the PFA 
can be much larger than for the force between two surfaces!

  Before we described large deviations from 
PFA for a sinusoidal corrugated surface.



Atoms as local probes

In contrast to the case of the lateral Casimir force between corrugated surfaces, an 
atom is a local probe of the lateral Casimir-Polder force. Deviations from the PFA 
can be much larger than for the force between two surfaces!

  Before we described large deviations from 
PFA for a sinusoidal corrugated surface.

  Even larger deviations from PFA can be 
obtained for a periodically grooved surface.

  If the atom is located above one plateau, the PFA predicts that the lateral 
Casimir-Polder force should vanish, since the energy is thus unchanged in a 
small lateral displacement. 

  A non-vanishing force appearing when the atom is moved above the plateau 
thus clearly signals a deviation from PFA!



CP energy for grooved surface 

h(x) = a

(

1 −

s

2λc

)

+
2aλc

π2s

∞
∑

n=1

(−1)n+1 1 − cos(nπs/λc)

n2
cos

(

2πnx

λc

)

 Surface profile for periodical grooved corrugation

U
(1)
CP(RA) =

∫
d2k

(2π)2
eik·rA g(k, zA) H(k) H(k)

  Single-atom lateral CP energy: it can be easily calculated using that the first 

order lateral CP energy                                                 is linear in 

U (1)
CP(xA, zA) = a

(

1 −

s

2λc

)

g(0, zA) +
2aλc

π2s

∞
∑

n=1

(−1)n+1 1 − cos(nkcs/2)

n2
g(nkc, zA) cos(nkcxA)

zA



CP energy for grooved surface 

h(x) = a
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 Surface profile for periodical grooved corrugation

U
(1)
CP(RA) =

∫
d2k

(2π)2
eik·rA g(k, zA) H(k) H(k)

  Single-atom lateral CP energy: it can be easily calculated using that the first 

order lateral CP energy                                                 is linear in 

U (1)
CP(xA, zA) = a

(

1 −

s

2λc

)

g(0, zA) +
2aλc

π2s

∞
∑

n=1

(−1)n+1 1 − cos(nkcs/2)

n2
g(nkc, zA) cos(nkcxA)

The PFA is recovered when the response function        
may be replaced by            for all values of     significantly 
contributing to the profile

g(nkc, zA)

g(0, zA) n

h(x)

When             , the exponential decrease for g implies 
that the          term dominates the sum, and the potential 
is approximately sinusoidal, with an effective amplitude

kczA ! 1

n = 1

h0 =
2aλc

π2s
(1 − cos(kcs/2)) s = λc/2 h0 = 100nm ↔ a = 250nmEg: for             , this gives

kczA = 0.3 kczA = 10

zA



BEC as a field sensor
Novel cold atoms and nano-fabrication techniques offer exciting experimental
possibilities to probe quantum vacuum effects.  We consider two possible 
experimental set-ups:

 BEC oscillator

Antezza et al (2004) Cornell et al (2005, 2007)

  The normal component of Casimir-Polder force 
shifts the normal dipolar oscillation frequency of a BEC 
trapped above a surface 

U
(0)
CP(z)



BEC as a field sensor
Novel cold atoms and nano-fabrication techniques offer exciting experimental
possibilities to probe quantum vacuum effects.  We consider two possible 
experimental set-ups:

 BEC oscillator

Antezza et al (2004) Cornell et al (2005, 2007)

  The normal component of Casimir-Polder force 
shifts the normal dipolar oscillation frequency of a BEC 
trapped above a surface 

U
(0)
CP(z)

CM

V (r) = Vho(r) + UCP(r)

Vho(r) =
m

2
(ω2

xx2 + ω2
yy2 + ω2

zz2) ωy ! ωx = ωz

  In order to measure the lateral component              , a cigar-shaped BEC could 
be trapped parallel to the corrugation lines, and the lateral dipolar oscillation  
measured as a function of time

ω2
x,CM = ω2

x
+

1

m

∫
dxdz n0(x, z)

∂2

∂x2
U

(1)
CP(x, z)

U
(1)
CP(x, z)

Lateral frequency shift: 



BEC as a field sensor (cont’d)
 Density variations of a BEC above an atom chip

Schmiedmayer et al (2005)

  For a quasi one-dimensional BEC, the potential 
is related to the 1D density profile as

Measurement of the magnetic field 
variations along a current-carrying wire

∆U =
γ∆N

ρ2
0
x0

; γ ≡

2h̄2

m
ascat

Single shot sensitivity for potential measurement:

∆N ! 4 atoms per pixel (detection imaging noise)
x0

ρ0

longitudinal spatial resolution
transverse spatial resolution

∆U ! 10−14 eV (@ ωx/2π = 300 Hz)

Vho(x) + UCP(x) = −h̄ωx

√

1 + 4ascatn1d(x)



BEC as a field sensor (cont’d)
 Density variations of a BEC above an atom chip

Schmiedmayer et al (2005)

  For a quasi one-dimensional BEC, the potential 
is related to the 1D density profile as

Measurement of the magnetic field 
variations along a current-carrying wire

∆U =
γ∆N

ρ2
0
x0

; γ ≡

2h̄2

m
ascat

Single shot sensitivity for potential measurement:

∆N ! 4 atoms per pixel (detection imaging noise)
x0

ρ0

longitudinal spatial resolution
transverse spatial resolution

∆U ! 10−14 eV (@ ωx/2π = 300 Hz)

Vho(x) + UCP(x) = −h̄ωx

√

1 + 4ascatn1d(x)

   

  To measure the lateral CP force, the elongated 
BEC should be aligned along the x-direction, and a 
density modulation along this direction above the 
plateau would be a signature of a nontrivial (non-
PFA) geometry effect.

∆U
(1)
CP ! 10

−14
eV

For the lateral CP force, perfect conductor, 
sinusoidal corrugation (                  ), distance       
               , PFA limit 

a = 100nm

zA = 2µm (kczA ! 1)

CM
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 γ
0

gold
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fused silica

Frequency shift for single atom

 Grooved corrugation:

γ0 ≡

ωx,CM − ωx

ωx

γ0 = −

3kc a

2πm ω2
x s

∞∑

n=1

(−1)n+1(1 − cos(nkcs/2)) g(nkc, zA)

  Assuming PFA, the frequency shift     should 
vanish since the potential is locally flat on top of 
the plateau. Indeed, it is very small for 

γ0

kczA < 1

 As increases       ,     develops a peak and 
then exponentially decreases as the atom-
surface separation grows.

kczA γ0

 The maximal frequency shift decreases as 
the atom-surface distance grows, reaching 
values               for distances zA > 3µmγ0 < 10

−5

Rb

zA = 2µm ωx/2π = 229 Hz

s = λc/2 a = 250nm

 Sinusoidal corrugation: γ0 = −

k2
c a g(kc, zA)

2m ω2
x

 The relative frequency shift is defined as

 For a single atom above a corrugated surface:
zA



Frequency shift for BEC

CM

In the Thomas-Fermi approximation,          
                , the BEC density isEkin ! Epot

g = 4πh̄2a/m
µ = (h̄ωho/2) (15Na/aho)

2/5

aho = (h̄/mωho)
1/2

atom-atom interactions
chemical potential

h.o. ground state width

ωho = (ωxωyωz)
1/3 h.o. effective frequencyn0(r) = g−1[µ − Vho(r)]

 Axially-symmetric cigar-shaped BEC (ωy ! ωx = ωz)

n0(x, z) =
15

6π

1

R5
[R2

− (x2 + z2)]3/22D density:

R is the Thomas-Fermi radius

 Relative frequency shift    (averaging over single-atom frequency shift     ) 

γ = −
5kc a

π2m ω2
x

s

∞∑

n=1

(−1)n+1(1 − cos(nkcs/2)) × In(R, zCM, kc)

In(R, zCM, kc) =
1

R5

∫ 2π

0

dθ

∫ R

0

dρ ρ (R2
−ρ2)3/2g(nkc, zCM+ρ sin θ) cos(nkcρ cos θ)

The single-atom case is obtained in the “point-like” limit

γ0γ

R ! zCM, λc ⇒ γ → γ0
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s = λc/2 a = 250nm
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Given the reported sensitivity                        for relative frequency shifts from E. 
Cornell’s experiment, we expect that beyond-PFA lateral CP forces on a BEC 
above a plateau of a periodically grooved silicon surface should be detectable for 
distances                , groove period              , groove amplitude               , and a 
BEC radius of, say, 

γ = 10
−5

− 10
−4

zCM < 3µm λc = 4µm a = 250nm

R ≈ 1µm

δx

∝ k2

c
δ2

x
/8 ≈ 8% (@ δx = 0.5µm , λc = 4µm)



Summary

  Novel cold atoms techniques open a promising way of 
investigating nontrivial geometrical effects on quantum vacuum

  Important feature of atoms: they can be used as local 
probes of quantum vacuum fluctuations

  We predict large deviations from PFA for the lateral 
Casimir-Polder force of an atom above a corrugated surface

  Non-trivial, beyond-PFA effects should be measurable using 
a BEC as a vacuum field sensor with available technology

For more details see: 

Dalvit, Maia Neto, Lambrecht, and Reynaud,  arXiv:0709.2095    



Metamaterials and Casimir

Felipe da Rosa (LANL)

Peter Milonni (LANL)

Artificial materials for engineering the Casimir force

Antoniette Taylor (CINT, LANL)

Ongoing work in collaboration with:

Theory:

Experiment:

Smith et al (2007) 
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Casimir attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
electric-magnetic interactions. However, natural 
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 Ideal attractive limit
ε1 = ∞ ε2 = ∞

Casimir 1948

F

A
= +

π2

240

h̄c

d4

 Ideal repulsive limit
Boyer 1974

ε1 = ∞ µ2 = ∞
F

A
= −

7

8

π2

240

h̄c

d4



Casimir attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
electric-magnetic interactions. However, natural 
occurring materials do NOT have strong 
magnetic response in the optical region, i.e. 

Metamaterials
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Metamaterials
 Artificial structured composites with designer electromagnetic properties

 Macroscopic EM response described by dispersive magneto-dielectric media

 Negative refraction

 Perfect lens

 Cloaking

Veselago (1968), Smith et al (2000) 

Pendry (2000) 

Smith et al (2007) 

THz MMs: eg split ring resonators Optical MMs: eg nano-pillars

ε, µ < 036µm 200nm



   

Quantum levitation with MMs?

“In theory the 
discovery could be 
used to levitate a 

person”



Quantum levitation with MMs?
Leonhardt et al (2007) 
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Quantum levitation with MMs?
Leonhardt et al (2007) 

ε(ω) = −1

µ(ω) = −1

x

x
′

b0

Transformation media

Perfect lens: EM field in -b<x<0 is mapped into 
x’. There are two images, one inside the device 
and one in b<x<2b.

a

a
′

a
′
= |a − 2b|

f = −

∂U

∂a′

∂a′

∂a
= +

h̄cπ2

240a′4

When a< 2b (plates within the imaging range of 
the perfect lens)

Casimir cavity:

Repulsion

For real materials, however .....

• According to causality, no passive medium (               ) can sustain                  
over a wide range of frequencies. In fact,  

• Leonhardt proposes to use an active MM (                ) in order to get 
repulsion. But then the whole approach breaks down, as real photons would 
be emitted into the quantum vacuum. 

ε”(ω) > 0 ε, µ ! −1

ε(iξ), µ(iξ) > 0

ε”(ω) < 0

2b−b

b
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Metamaterials for Casimir 

Metamaterial

Drude-Lorentz model:

εα(ω) = 1 −

Ω2

E,α

ω2
− ω2

E,α + iΓE,αω

µα(ω) = 1 −

Ω2

M,α

ω2
− ω2

M,α + iΓM,αω

Re ε2(ω) < 0 Re µ2(ω) < 0

Drude metal (Au)

ΩE,2/Ω = 0.1 ΩM,2/Ω = 0.3

ωE,2/Ω = ωM,2/Ω = 0.1

ΓE,2/Ω = ΓM,2/Ω = 0.01

Ω/2π = 5 × 10
14

rad s
−1

ΩE = 9.0 eV ΓE = 35 meV

Infrared-optical frequencies

Typical separations 
d = 200 − 1000 nm



Metamaterials for Casimir 

10 100 1000

d (nm)

0

2

4

6

8

10

F
/A

 (
P

a
)

Drude metals (Au)

Drude metal (Au)

Drude metal (Au)

Only attraction

10 100 1000

d (nm)

0

0.5

1

1.5

2

F
/A

 (
P

a
)

!/"=0.0

!/"=0.1

Metamaterial

Metamaterial

Only attraction

Drude metal (Au)

Metamaterial

Repulsion-attraction

10 100 1000

d (nm)

-2

-1

0

1

2

F
/ 

A
 (

P
a
)

!/"=0.0

!/"=0.1

!/"=0.01

Ideal attraction

Ideal repulsion

A slab made of Au (                         ) of width                could levitate in 
front of one of these MMs at a distance of                     !!!

ρ = 19.3 gr/cm3 δ = 1µm

d ≈ 110 nm

Casimir and metamaterials, Henkel et al (2005)
Casimir and surface plasmons, Intravaia et al (2005)

van der Waals in magneto-dielectrics, Spagnolo et al (2007)



Summary

 Build MMs with strong magnetic response at infrared-
optical frequencies, corresponding to gaps between 200 nm 
and 10 microns. 

 Ongoing theory-experimental work at LANL to realize  
strongly modified / repulsive Casimir forces with metamaterials. 

 Metamaterials can strongly influence the quantum vacuum, 
providing a route towards quantum levitation. 



General conclusions

Casimir forces: still surprising after 60 years

CM

  Non-trivial geometry effects

  Non-trivial materials effects


